Timing and dynamics of single cell gene expression in the arabinose utilization system.

نویسندگان

  • Judith A Megerle
  • Georg Fritz
  • Ulrich Gerland
  • Kirsten Jung
  • Joachim O Rädler
چکیده

The arabinose utilization system of Escherichia coli displays a stochastic all-or-nothing response at intermediate levels of arabinose, where the population divides into a fraction catabolizing the sugar at a high rate (on-state) and a fraction not utilizing arabinose (off-state). Here we study this decision process in individual cells, focusing on the dynamics of the transition from the off- to the on-state. Using quantitative time-lapse microscopy, we determine the time delay between inducer addition and fluorescence onset of a GFP reporter. Through independent characterization of the GFP maturation process, we can separate the lag time caused by the reporter from the intrinsic activation time of the arabinose system. The resulting distribution of intrinsic time delays scales inversely with the external arabinose concentration, and is compatible with a simple stochastic model for arabinose uptake. Our findings support the idea that the heterogeneous timing of gene induction is causally related to a broad distribution of uptake proteins at the time of sugar addition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli

Inducible switching between phenotypes is a common strategy of bacteria to adapt to fluctuating environments. Here, we analyze the switching kinetics of a paradigmatic inducible system, the arabinose utilization system in E. coli. Using time-lapse fluorescence microscopy of microcolonies in a microfluidic chamber, which permits sudden up- and down-shifts in the inducer arabinose, we characteriz...

متن کامل

Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies

Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

Therapeutic Efficacy Analysis of lncRNA NEAT1 Gene Knockout and Apoptosis Induction in Prostate Cancer Cell Line Using CRISPR/Cas9

Background and Objective: Long non-coding ribonucleic acid (lncRNA) has been identified as an important gene regulator and prognostic marker in various cancers. The present study aimed to investigate the effects of Nuclear Paraspeckle Assembly Transcript1 (NEAT1) gene knockout using Clustered Regularly Interspaced Short Palindromic Repeats-associated Protein 9 (CRISPR/Cas9) in PC-3 cell line. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 2008